
20 CROSSTALK The Journal of Defense Software Engineering March 1998

A Software Development Process for COTS-Based
Information System Infrastructure: Part 1

Greg Fox, TRW Systems Integration Group
Karen Lantner, EDS

Steven Marcom, TRW Information Services Division

The Infrastructure Incremental Development Process fills two gaps within the realm of software devel-
opment processes: It provides a programmatic, prototype-driven, but carefully controlled approach to
commercial-off-the-shelf selection and integration, and it provides a process that specifically addresses
development not of applications but of the infrastructure of a large distributed information system.

The level of abstraction at
which the software developer
works has changed markedly

throughout the last 40 years. Early pro-
grammers used ones and zeros to control
the electronic switches within comput-
ers. That technology was followed by
procedural languages that, from the
programmer’s view, removed much of
the physical housekeeping associated
with the specific design of the computer.
In recent years, an even higher level of
abstraction has appeared: the integration
of prepackaged commercial-off-the-shelf
(COTS) software into system designs. In
addition, the domain of software devel-
opment has become segmented into
different layers. For example, applica-
tion-level software development can be
distinguished from infrastructure-level
software development.

The Emerging Divide in System
Functionality
The value of layering in software archi-
tecture and implementation is an estab-
lished concept. Key to the layering
model is the idea that through use of
defined interfaces between layers, the
impact of changes in any given layer can
be largely isolated from the other layers.

The concept of a services layer and of
specialized software in the system acting
as service providers has continued to

grow from the simple beginnings in the
operating system to become a funda-
mental architectural concept in modern
system design. As reuse and portability
of software applications across different
vendor hardware platforms become an
increasingly important goal, a more
sophisticated model of service layers and
service providers has emerged. The open
systems movement cites application
portability across computing platforms
as a major economic driver [1, 2].

The National Institute of Standards
and Technology (NIST) Application
Portability Profile (APP) [3] provides
one convenient model to define system
layers and services that support portabil-
ity. This model, along with standards,
helps achieve application portability by
guiding designers who plan to code new
information systems in their entirety and
by guiding selection of available software
computing components from those
available in the marketplace.

Modern information system design
models separate the business-specific
application software layer in a system
from the technology-based infrastructure
software layer. An illustration of this
approach is the information engineering
method of separating business system
architecture from technical architecture,
which contains the computing infra-
structure [4]. This separation into soft-
ware layers, which is less formally ad-
dressed in other design methods,
recognizes that change and evolution in
information systems are driven by two
independent forces: change in business
requirements and change in technology.
Decoupling the impact of business rule
change from change in technology de-

creases the total amount of system re-
work necessary to support system evolv-
ability over time. This decoupling is
effectively implemented by modeling the
infrastructure software using the concept
of services layers and service providers.

Views of Infrastructure
There are two ways to look at the infra-
structure. One view is the services view
of infrastructure as seen by business
application developers. It includes Hu-
man Computer Interface, Systems Man-
agement, Security, Work-Flow Manage-
ment, Telecommunications, Data
Interchange, Transaction Processing,
Data Management, and Operating Sys-
tems. This grouping of infrastructure
services was derived from the NIST APP.
Infrastructure services are delivered to
the applications through an application
programming interface (API).

The second view is the structural
view, which includes the kinds of com-
ponents infrastructure developers use to
construct their view of the infrastruc-
ture: a set of connected software, net-
work, and hardware components. These
include developed software components,
COTS software components, communi-
cations circuits, local area networks,
special purpose servers, general purpose
servers, workstations, and laptops.

An additional set of functionalities,
treated as part of the infrastructure dur-
ing the development process, are the
technical applications needed to operate
the system. These applications neither
implement business functionality nor
provide services to the business applica-
tion. They are, for example, the tools for
system security administration, database

© 1997 IEEE. This material is adapted and re-
printed, with permission, from a paper presented
at the IEEE/SEI-sponsored Fifth International
Symposium on Assessment of Software Tools and
Technologies, Pittsburgh, Pa. held June 3-5,1997,
pp. 133-142. Part 2, which will appear in the
April 1998 issue of CROSSTALK, describes real-world
applications of the IIDA model and examines the
practical lessons learned and pitfalls encountered.

CROSSTALK The Journal of Defense Software Engineering 21March 1998

administration, system configuration
control, software distribution, and, in
general, the tool-set for enterprise-level
systems management. Other infrastruc-
ture services are also used internal to the
infrastructure but are not visible to
business applications or end users. For
example, a remote data access protocol is
a level of service provided between infra-
structure components that is used to
construct a mechanism to access data: It
is not directly visible to business applica-
tions or end users.

Infrastructure services provide func-
tionality that the application developer
can access external to the application
and, therefore, does not develop as part
of the application. Economy of scale is
achieved through common use of tech-
nical services by application develop-
ment projects across the enterprise. Pro-
grammers can access infrastructure
services without regard to how underly-
ing infrastructure services have been
implemented using a properly designed
API. By allowing application and infra-
structure development to be separate
and independent, infrastructure en-
hancements, e.g., increased performance,
additional services, and new computing
platforms, can be made with minimal
effects on application development.

The COTS Challenge for
Infrastructure
Although distributed systems (popularly
described as client-server or networked
systems) dominate today’s computer
system design, they still have the charac-
ter of adolescence. We are in the middle
of a dramatic and somewhat uncon-
trolled expansion and evolution of
standards for COTS software products
for distributed systems. COTS products
provide portions of needed supporting
technical functionality to turn collec-
tions of computing platforms into uni-
fied, distributed computing environ-
ments. Available COTS software
products offer varying degrees of stan-
dards compliance, interoperability, het-
erogeneous computing platform sup-
port, security functionality, performance
efficiency, and distributed environment
transparency for applications using their
services.

Two separate panels at the 1995
Software Engineering Institute/Micro-
electronics and Computer Technology
Corporation Symposium on “The Use
of COTS in Systems Integration” con-
cluded that “there is a need for process
definitions for COTS usage,” [5] and
“new lifecycle models for COTS integra-
tion projects are needed.” [6] Currently,
documented software development
lifecycle processes provide little practical
guidance to developers to achieve the
advantages of COTS software or to assist
in the selection of specific products from
the myriad available. COTS product
selection and integration are complicated
by an intrinsic set of special characteris-
tics: incompatibility, inflexibility, com-
plexity, and transience.

Development Lifecycle Process
Impact
The special characteristics of COTS
software integration change the empha-
sis in the classic waterfall lifecycle stages
of planning, definition, analysis, design,
construction, integration and test,
implementation, deployment, and main-
tenance. COTS-based development
differs from business application-ori-
ented development in that the COTS
selection process must occur early in the
lifecycle. COTS evaluation and selection
become a critical part of the early analy-
sis process rather than a peripheral activ-
ity within the later design process. The
challenges of COTS incompatibility,
inflexibility, complexity, and transience
must be addressed in the selection pro-
cess because the infrastructure will ulti-
mately consist of a suite of COTS prod-
ucts that must operate in harmony.

In addition, since COTS software
does not require coding but does re-
quire integration with other compon-
ents, it starts the lifecycle as a partially
developed component. The design,
construction, and integration and test
development stages must be recast to
accommodate early COTS software
integration and testing as well as to
develop glue code: interface software,
configuration files, scripts, utilities, and
data files required to make the COTS
software deliver its intended function-
ality. The proper development and

testing of the glue code to make a
COTS package work may not be a
trivial undertaking. For more complex
COTS software, the development of
glue code might need to be treated in
the same manner as the development of
a traditional custom-coded software
module.

When a COTS product enters the
development process, the first task is to
test and integrate it into the system. This
activity starts early in the development
process. Waiting until late in the devel-
opment process to test and integrate
COTS products, particularly those that
are complex, will not give adequate time
to master all their intricacies and com-
plexities. COTS product testing and
integration activities must be interwoven
into more of the development process
stages.

COTS Incompatibility
Many vendors do not develop their
products along the lines of the layering
models discussed earlier. As this is being
written, no single commercially available
software product or product family can
provide all the infrastructure services
needed for an enterprise-level infor-
mation system of substantial size or
complexity. The problem to be solved in
system design and development is to
select a compatible set of software prod-
ucts that can be integrated together and
augmented by glue code to produce a
complete set of services.

In an ideal world, a set of products
that provide all the needed infrastructure
services would simply “snap together”
like the pieces in the puzzle shown in
Figure 1. In the real world, this is not
the case: when put together, COTS
pieces have gaps and overlaps. At any
point in time, the set of services that a
system designer can specify as useful
exceeds what is available in mature prod-
ucts in the marketplace. The resulting
gaps can be overcome in two ways. One
is by traditional design and development
of custom infrastructure software added
around the commercially available prod-
ucts selected (either adding layers be-
tween the COTS-based infrastructure
and the applications or adding custom
service-provider software that is concep-

A Software Development Process for COTS-Based Information System Infrastructure: Part 1

22 CROSSTALK The Journal of Defense Software Engineering March 1998

tually parallel to the COTS software).
Another way is by leaving it to the appli-
cation designers to deal with at the appli-
cation level.

Overlaps between products can cause
a greater system design problem than
gaps. Commercial software suppliers are
driven much more by a desire to capture
larger segments of the marketplace than
they are by adherence to recommended
system implementation layering models.
For example, boundaries between data-
base access, transaction processing, and
work-flow management software prod-
ucts begin to overlap and blur as each
vendor community expands its product’s
features in pursuit of increased market
share.

This expansion in features is driven
by requests for increased functionality by
the installed base, not by the boundaries
defined in layering models. The net
result is that certain products and prod-
uct sets do not work synergistically with
other products; yet, none of the products
on its own is complete enough to pro-
vide all of the necessary functionality.
Selection of a specific product that pro-
vides a certain set of services often pre-
cludes selection of another functionally
complementary product.

COTS Inflexibility
The inflexibility characteristic of COTS
software can cause both design and inte-
gration difficulties. Unlike custom-
developed software, when a piece of
commercial software exhibits a behavior
not expected by the system designer, the
developer cannot merely change the
behavior of that software but must either

that just because the system has been
integrated and tested in a test facility
does not mean that it can be quickly
made operational at a production loca-
tion. The tailoring and tuning process
for each location’s configuration can
require days, weeks, or months.

COTS Transience
COTS software products are character-
ized by periodic updates. Updates might
add functionality but are often incom-
patible with other system components.
On the other hand, remaining with
older versions of COTS products might
cause future interoperability problems
with upgrades to other COTS software.
COTS software updates, particularly
operating system updates, must always
be evaluated for insertion into the sys-
tem, since critical vendor maintenance
and support for older versions often
ceases. Management, cost, and technical
factors in the transition to new COTS
software versions can be formidable,
particularly in a system with dozens of
interrelated products upgraded by their
vendors on different calendar cycles.

The Infrastructure Incremental
Development Approach (IIDA)
The development of a COTS-based
technical infrastructure demands an
approach that is fundamentally different
from traditional approaches used for
business-oriented applications: one that
is heavily prototype-oriented, emphasizes
testing, and evolves through multiple
iterations. The IIDA is a tailored
lifecycle that preserves the benefits of
existing structured processes for software
development while adapting to the par-
ticular characteristics of integrating
COTS products. The IIDA is a combi-
nation of the classical waterfall develop-
ment model [7] and the spiral develop-
ment model [8], but the emphasis is on
establishing compatibility and complete-
ness rather than on component-level
specifications.

Overview of IIDA
The IIDA is an iterative and incremental
approach to infrastructure development
where each version of the infrastructure
is an increment that is integrated into

Figure 1. Generic information system
infrastructure service.

replace the software, work around the
unexpected behavior, or change require-
ments. Understanding the behavior of an
unmodifiable software component is a
different process than specifying the
behavior of a component to be
constructed. Most documented software
development methods take the latter
approach and do not address the former.

COTS Complexity
The complexity characteristic of many of
today’s advanced COTS software prod-
ucts causes distortions in the traditional
development process time line. The
flexibility and tailorability of product
families like transaction monitors, work-
flow managers, and system management
frameworks mean a significant education
investment. The investment must be
made upfront before the product can be
fully evaluated for selection, and in cases
when the product proves unsuitable, the
investment might have a zero net return.
Experience shows that the selection
process for one major product can re-
quire three to six months of calendar
time, multiple engineers and program-
mers, access to sophisticated suites of
hardware and software environments,
and will likely entail the purchase of
vendor-provided training classes.

The more complex COTS software
products are tailorable and scalable to
multiple hardware configurations, soft-
ware environments, and workload
environments. To achieve this flexibility,
they contain from dozens to hundreds of
adjustable parameters (or “knobs”). Each
of these must be set for the specific sys-
tem configuration. If the system is being
built for deployment in multiple loca-
tions with different hardware config-
urations or workload environments, the
COTS software parameters might need
to be tuned for each installation. This
can be a complex task requiring product
expertise, experience with the behavior
of the integrated system, and, poten-
tially, support from analytic modeling
efforts. Software configuration files for
each location might need to be tailored
using the information developed during
system integration. Not only does this
require additional development effort,
the scheduling process must recognize

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 23March 1998

the existing infrastructure baseline.
Within each version, development pro-
ceeds in time-sequenced stages with
iterative feedback to preceding stages
(see Figure 2).

The target infrastructure is the long-
term vision for the infrastructure. It is
defined and subsequently refined during
the Definition and Analysis Stage
through a top-down process of analysis
of the enterprise requirements, enterprise
adopted standards, and the system archi-
tecture. The Technical Strategies compo-
nent captures the high-level description
of the complete system vision and de-
fines how the infrastructure will operate
[9]. The Services Identification compo-
nent is built up over time and is influ-
enced by technology trends, product
assessments, and the anticipated needs of
the business applications.

Development cycle stages are aug-
mented with a series of structured pro-
totypes for COTS product evaluation
and integration. For each COTS family,
the prototypes evolve from initial analy-
sis prototypes for a make-or-buy deci-
sion to, first, a series of design proto-
types for COTS product selection and
detailed assessment, and next, to a dem-
onstration prototype that becomes part
of the development test bed. The tim-
ing of the prototypes aligns with the
development stages, which depend on
the products from their corresponding
prototypes. This close coupling of
prototyping and classic development
stages characterizes the IIDA.

Each pass through the stages in
Figure 2 yields an incremental version

of the infrastructure that can be inte-
grated with applications and deployed.
After the implementation of each ver-
sion, successive developmental cycles
are initiated. The infrastructure thus
evolves toward the target infrastructure
by providing an increased level of ser-
vices to business applications and
developers and by incorporating new
underlying technology and products.

Infrastructure components are inte-
grated into the existing infrastructure
baseline. The components in this inte-
grated infrastructure baseline are then
ready to be integrated and tested with
business applications. Infrastructure
development ends with a technical
platform upon which business applica-
tions can run effectively rather than
with an operational product. The scope
of this article is infrastructure develop-
ment: It does not include the external
integration, testing, or distribution of
business applications.

IIDA Stages
The following is a summary of the major
activities of each IIDA stage.
Definition and Analysis Stage
• Enterprise requirements and stan-

dards, system architecture, and tech-
nical strategies are defined and re-
fined.

• Version-specific functional infra-
structure requirements are estab-
lished by considering business appli-
cation areas, architectural
imperatives, and technology avail-
ability.

Functional Design Stage
• Services included in the target and

current versions are identified and
defined.

• Prototypes are used to identify lead-
ing candidate COTS components.

Physical Design Stage
• Interfaces between applications and

infrastructure are defined (API is
established).

• Internal design of services is defined
both functionally and technically.

• COTS and to-be-built components
are identified.

• Prototypes are used to select and
characterize COTS components.

• Preliminary bill of materials is cre-
ated for acquisition of equipment
and COTS software products.

• Design is calibrated for scaling and
performance considerations to pro-
vide site designers with site configu-
ration guidelines.

• Structure of each to-be-built compo-
nent and its interfaces is defined.

Construction Stage
• To-be-built components are con-

structed.
• Glue code is developed, and the unit

is tested.
• COTS components, glue code, and

built components are integrated into
the infrastructure using the demon-
stration prototype as a test bed.

Test Stage
• Infrastructure versions are tested

prior to being integrated and tested
with business applications.

IIDA Milestones and Deliverable
Documentation
The infrastructure development ap-
proach uses formal and informal reviews,
turnovers, and walk-throughs to main-
tain the degree of formality necessary to
control and communicate the design (see
Figure 3). Formal reviews include
• Technical Review at the end of the

Analysis Stage.
• Design Review during the Physical

Design Stage.
• Test Review at end of the Test Stage.

Formal reviews are attended by orga-
nizations external to the infrastructure
development group as well as infra-
structure developers and managers.

Figure 2. Infrastructure development approach.

A Software Development Process for COTS-Based Information System Infrastructure: Part 1

24 CROSSTALK The Journal of Defense Software Engineering March 1998

These reviews occur once during the
development cycle for each version of
the infrastructure.

Other reviews, turnovers, and walk-
throughs are informal, rolling peer, or
management reviews that typically occur
when pieces of the design, construction,
or integration are ready to be walked
through. Infrastructure developers and
managers participate in the following
informal internal reviews.
• Top-Level Design Walk-throughs

during the Definition and Analysis
Stage.

• Design Turnovers (from design to
development organization) during
the Physical Design Stage.

• Detailed Design Walk-throughs at
the end of the Physical Design Stage.

• Code Walk-throughs during the
Construction Stage.

• Test Design Walk-throughs during
the Construction Stage.

• Development Turnovers (from devel-
opment to test organization) at the
end of the Construction Stage.
The lower portion of Figure 3 shows

the key documents produced during the
IIDA process. Target infrastructure
documents, which include Enterprise
Requirements, Technical Strategies, and
Services Identification, are created once
at the beginning of infrastructure devel-
opment and updated as versions are
produced. Version-specific infrastructure
documents are created for each infra-
structure version. Not shown in the
tables are the informal documentation
packages developed for the formal re-
views and informal walk-throughs.

The Critical Role of Prototypes
At the heart of the IIDA approach is a
series of tailored prototypes, shown as
Analysis, Design, Detailed Design, and
Demonstration prototypes in Figure 2,
which also illustrates their respective
time phasing in the overall process. This
can be viewed as a tailoring of the spiral
development model as each successive
set of prototypes narrows the solution
space for the final implementation.

Analysis Prototypes
Analysis prototypes are used to identify
leading candidate COTS software prod-

ucts in each COTS family. A COTS
family is defined as a group of COTS
software products that performs similar
functions or provides related services to
the application developers. Analysis
prototypes are designed to exercise a
COTS product to determine its general
capabilities and to discover how well it
satisfies the needs of the current version
of the infrastructure. Selection of the
best product in each family is performed
later using the design prototypes.

A sample application can be written
to serve as a test vehicle for the family of
products under evaluation because infra-
structure, by its very nature, provides
services rather than active applications.
The results of the analysis prototypes
feed the version-specific services defini-
tion and the version-specific services
application programming interface
(API) efforts with information on avail-
able COTS product behavior and per-
formance. A suite of COTS products
will be recommended as a result of these
prototypes that, when combined with
custom-developed glue code and to-be-
built software, cover all the requirements
of the combined service areas.

Analysis prototypes are also used to
examine emerging technologies for pos-
sible inclusion in future versions of the
infrastructure. Technology insertion

plays an important role in infrastructure
evolution from version to version.

Through the analysis prototypes,
methods to implement target technical
strategies into future infrastructure ver-
sions can be postulated and developed.
In this role, the analysis prototype sup-
ports the evolving definition of the long-
term vision or target infrastructure.

Design Prototypes
Design prototype help select the best
COTS product to incorporate into the
design from several candidates in each
area identified through the earlier analy-
sis prototypes. A design prototype exer-
cises a COTS product to determine its
functional capabilities and how well it
performs in accordance with its docu-
mentation. Specific benchmarks can be
run in addition to functional tests.
Sample applications will usually be writ-
ten as test vehicles for the products un-
der evaluation and to stimulate service
performance under conditions that
would be found in the application envi-
ronment.

Detailed Design Prototypes
Detailed design prototypes are a special
case of the design prototypes. They serve
as proof-of-concept prototypes and are
designed to exercise the selected COTS
products to demonstrate that detailed

Figure 3. Infrastructure milestones and deliverable documents.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25March 1998

COTS product capabilities are consis-
tent with the design expectations.
Sample applications are usually written
to serve as a test vehicle for the products
under evaluation. The results of the
detailed design prototypes feed the ser-
vices’ detailed internal design with infor-
mation on COTS behavior and perfor-
mance and with specific language and
syntax requirements to invoke services.

At this level of detail, designers
might find that a COTS product does
not perform as documented or as expect-
ed or that there are unexpected side
effects of a product’s behavior. The
functional design activity receives this
feedback, and may need to modify or
redesign the solution with a substitute
COTS product. The evaluation docu-
mentation created during earlier analysis
and design prototypes is used to stream-
line alternate COTS selection.

Demonstration Prototype
The demonstration prototype is used to
unit test infrastructure components and
to serve as a platform for infrastructure
component-to-component integration.
The sample applications used for the
design prototypes might be reused if
they are robust enough to exercise the
elements tested in the unit test.

The results of the demonstration
prototype feed back into the unit test
activity. Unlike the analysis and design
prototypes, which are investigative and
throwaway in nature, the demonstration
prototype is cumulative and evolves into
a test-bed environment for the infra-
structure.

Application of IIDA
Between 1994 and 1997, the IIDA
method was applied to develop the ini-
tial versions of an infrastructure to sup-
port business application developers for
a large enterprise-wide heterogeneous
system. In the April 1998 issue of
CROSSTALK, we will describe the applica-
tion of the IIDA model to that develop-
ment and examine the practical lessons
learned and pitfalls encountered. u

About the Authors
Greg Fox is a TRW Systems Integration
Group technical fellow and the director

of technology for the
Information Services
Division. He has 28
years experience in
mostly large or complex
information systems.
He has lead the archi-

tecture development and system integra-
tion for several large COTS-based sys-
tems and has been TRW’s information
systems infrastructure project manager
and chief architect for the Integration
Support Contract for Internal Revenue
Service (IRS) modernization. He has
engineering degrees from Massachusetts
Institute of Technology and University of
Southern California and has published
over a dozen papers.

TRW, Inc.
MVA1/4943
12900 Federal Systems Park Drive
Fairfax, VA 22033
Voice: 703-876-4396
E-mail: greg.fox@trw.com

Karen W. Lantner is a
program/project man-
ager for EDS in New
York City. She has 24
years management and
technical experience,
during which she has

managed and consulted on large federal
software development and COTS inte-
gration projects. A member of the team
that developed the EDS Systems Life
Cycle Methodology, she continues to
have a special interest in software devel-
opment methods. She has a bachelor’s
and a master’s degree from Brown Uni-
versity.

EDS
A5N-B50
13600 EDS Drive
Herndon, VA 22071
Voice: 800-336-4498, box no. 52032
E-mail: karen.w.lantner@aexp.com

Steven Marcom is a
senior systems analyst
with the Information
Services Division of
TRW. He has 30 years
managerial and techni-
cal experience develop-

ing computer systems for civil govern-
ment, defense, and commercial
customers. He was TRW’s systems life-
cycle deputy manager and information
systems infrastructure process engineer

for the Integration Support Contract for
IRS modernization. He has been active in
Rapid Application Development, COTS
integration, and prototyping activities.
He has a bachelor’s degree from Pomona
College and a master’s degree from the
American University of Beirut, both in
mathematics. He teaches software devel-
opment and integration at TRW.

TRW, Inc.
FP1
12900 Federal Systems Park Drive
Fairfax, VA 22033
Voice: 703-803-4814
E-mail: marcoms@gisdbbs.gisd.trw.com

References
1. Berson, A., “Openness and Proprietary

Standards,” Client/Server Architecture,
McGraw-Hill, New York, 1992, Section
1.2.2.

2. Cerutti, D. and D. Pierson, “The Rise of
Open Systems,” Distributed Computing
Environments, McGraw-Hill, New York,
1993, Chap. 2.

3. National Institute of Standards, Applica-
tion Portability Profile, The U.S.
Government’s Open System Environ-
ment Profile OSE/1 Version 2.0, NIST
Special Publication 500-210, June 1993.

4. Martin, James, Information Engineering,
Prentice-Hall, Englewood Cliffs, N.J.,
1989.

5. Software Engineering Institute, “A Com-
mercial/Business Perspective,” Proceedings
of the SEI/MCC Symposium on the Use of
COTS in Systems Integration, Special
Report CMU/SEI-95-SR-007, June
1995, p. 24.

6. Software Engineering Institute, “Systems
Architecture and COTS Integration,”
Proceedings of the SEI/MCC Symposium
on the Use of COTS in Systems Integration,
Special Report CMU/SEI-95-SR-007,
June 1995, p. 26.

7. Royce, W.W., “Managing the Develop-
ment of Large Software Systems: Con-
cepts and Techniques,” Proceedings of
ICSE9, IEEE Computer Society Press,
1987.

8. Boehm, B.W., “A Spiral Model of Soft-
ware Development and Enhancement,”
Computer, May 1988, pp. 61-72.

9. Cooper, R. and G. Fox, “Technical
Strategies to Guide the Design of Dis-
tributed Information Systems,” SIG
Technology Review, TRW Systems Inte-
gration Group, Winter 1996.

A Software Development Process for COTS-Based Information System Infrastructure: Part 1

